[МногоБукв] Экономим энергию? Угольный компьютер!

Место, где бьется неутомимый пульс компьютерной индустрии, недаром метко прозвали «Кремниевой Долиной». Начиная с 1960-х годов компьютерные чипы делают из кремния. Но ученые из Университета Южной Калифорнии, похоже, нашли способ положить конец полувековому господству кремния в электронике, заменив его… самым обыкновенным углем. Пока одни создают миниатюрные компьютеры, другие ищут пути изменить сам подход к производству этих незаменимых помощников человека.

[МногоБукв] Экономим энергию? Угольный компьютер!

На самом деле идея использования угольных нанотрубок в транзисторах не нова. Еще в далеком 1998 году Дельфтским университетом были созданы первые транзисторы из угольных нанотрубок. Если бы удалось довести дело до конца и создать чипы из этого материала, это позволило бы сэкономить электроэнергию, которую наша цивилизация и так неумеренно поглощает, особенно в последние годы.

Так почему же до сих пор в компьютерных чипах используется неэкономный кремний!? Главная причина этой «недоработки» в том, что до сих пор процесс производства нанотрубок был непредсказуем. Не получалось точно задать диаметр, тип и, в особенности, хиральность. Последний показатель влияет на элетромеханические свойства материала.

Чтобы внести некоторую ясность, приведем простейший пример. Сверните лист офисной бумаги трубочкой. У получившейся конструкции будет определенная хиральность. Теперь сверните его же под углом. Хиральность будет другой. Вы скажете: «Так какие проблемы! Надо просто правильно сворачивать». Но, если свернуть лист бумаги под нужным углом не составляет ни малейшей проблемы, то тончайший наноматериал так просто не «сворачивается».

Решение проблемы найдено группой ученых под руководством профессора Чонгву Жоу (Chongwu Zhou) из Университета Южной Калифорнии совместно с группой Минга Женга (Ming Zheng) из Национального института стандартов и технологий в Мэриленде. Новая технология позволяет создавать угольные нанотрубки с предсказуемыми диаметром и хиральностью.

Профессор Жоу горд найденным решением и считает его истинным научным прорывом, о котором его выдающиеся предшественники, работавшие в этом направлении, могли лишь мечтать:

Возможность контролировать хиральность угольных нанотрубок была мечтой многих исследователей. Сейчас эта мечта воплощается в реальность.

Обычно карбоновые нанотрубки производили с использованием системы химического выпаривания. Под воздействием катализатора из металлических наночастиц газ обретал структуру нанотрубки. Принято было считать, что диаметр нанотрубки зависит от размера металлических наночастиц. Но попытки пойти через контроль размера наночастиц, входящих в состав катализатора, не привели к ожидаемому успеху.

Ученые из Университета Южной Калифорнии решили отказаться от работы над катализатором. Вместо этого было решено сортировать выращиваемые частицы карбоновых нанотрубок по показателю хиральности, используя разработанную в университете технологию. Эти частицы используются как основа для выращивания более длинных трубок, которые производятся по технологии химического осаждения из паровой фазы. Сама трубка в итоге имеет такую же хиральность (а, следовательно, такие же электромеханические свойства), как и основа-прототип.

Этот технологический процесс сейчас называют процессом «клонирования нанотрубок». Следующим шагом в исследованиях станет тщательное изучение механизма роста нанотрубок в описанной выше системе. Это позволит в дальнейшем нарастить объемы производства до промышленных масштабов.

Источник: Esciencenews.com

Источник

Related Articles

Back to top button
Close
sinkronisasi reel pendek pola 4 6 spin yang sering mendahului scatter ketiga riset soft start ketika awal spin terlihat ringan tapi menyimpan momentum besar pola jam senja 18 30 20 30 aktivasi wild lebih rapat dibanding sesi lain deteksi visual micro flash efek singkat yang muncul tepat sebelum pre freespin analisis jalur simbol menyilang indikator non linear menuju burst bertingkat fenomena board padat simbol besar berkumpul sebelum tumble panjang terbuka studi turbo pendek mengapa 6 9 spin cepat lebih sering mengunci momentum perilaku reel awal saat reel 1 2 terlihat berat menjelang aktivasi multiplier pola recovery halus wild tunggal muncul setelah dead spin sebagai sinyal balik arah riset scatter tertahan ketika dua scatter bertahan lama sebelum ledakan aktual efek clean frame stabil layar terlihat bersih tepat saat rtp masuk zona seimbang analogi hujan gerimis tumble kecil berulang yang diam diam mengarah ke burst besar mapping ritme animasi perubahan tempo visual sebagai petunjuk pre burst pola jam malam 21 00 23 00 frekuensi multiplier bertingkat meningkat signifikan reel terakhir aktif aktivasi mendadak di reel 5 sebagai pemicu tumble lanjutan observasi spin manual kontrol ritme yang membantu membaca sinyal sistem deteksi low pay berpola ketika simbol kecil justru menjadi fondasi bonus studi pre burst senyap fase tenang 8 12 spin sebelum ledakan tajam jalur simbol turun naik gerakan dinamis yang mengindikasikan multiplier siap aktif blueprint sesi pendek strategi mengatur awal tengah spin agar momentum tidak terbuang reel tengah menguat pola sinkronisasi halus yang sering jadi awal scatter berlapis riset mini tumble ketika 3 tumble pendek berurutan jadi penanda bonus dekat kabut tipis di layar frame redup yang hampir selalu mengarah ke pre multiplier analisis pola jam 17 00 20 00 wild awal muncul lebih konsisten dari hari sebelumnya slide track tajam pergerakan simbol diagonal yang munculkan fase pre burst fenomena quiet board ketika 10 spin tenang justru memunculkan ledakan mendadak scatter luncur lambat indikator unik bahwa freespin akan terealisasi setelah 2 4 spin pola spin turbo ringkas efektivitas 7 turbo cepat dalam memicu tumble besar perubahan warna clean frame efek putih pucat yang jadi kode sebelum multiplier aktif riset simbol berat ketika high pay turun lebih banyak dari biasanya menjelang bonus analisis rotasi vertikal jalur simbol memanjang yang memperkuat potensi burst pola jam dingin 02 00 04 00 scatter sering bertahan lama sebelum akhirnya terkunci fs simulasi 3000 spin frekuensi wild grip muncul tinggi di pola malam hari reel 5 hyper active tanda bahwa sistem sedang mendorong momentum ke kanan analogi sungai tenang layar tanpa tumble yang justru menyimpan ledakan 2 3 putaran lagi frame gelap sesaat sinyal visual tipis sebelum scatter muncul berturut turut pola recovery wild ketika wild muncul setelah dead spin panjang sebagai pembalik keberuntungan mapping simbol rendah bagaimana low pay yang berulang bisa mengangkat probabilitas bonus reel bergerak serempak efek sinkronisasi singkat sebelum pre freespin sequence pola burst 3 lapisan ketika sistem memberikan tumble berjenjang yang mengarah ke ledakan utama